ALERT: Read about the response to COVID-19 taking place in EPSCoR/IDeA jurisdictions.

Posted on

Husker-led project to advance, standardize field of phenotyping

The physical characteristics of a plant can reveal a lot about its underlying genetics. How many kernels of wheat does a single plant produce? How quickly does a corn plant grow? How much water does it use? Understanding a plant’s physical traits, and linking those traits to specific genes, ultimately drives development of improved crops, higher yields for farmers and greater food security worldwide.

The science of capturing the characteristics of plants is called phenotyping, and until recently, it has been extremely time- and labor-intensive. Historically, trained researchers relied largely on the sight, touch and feel of a plant to record and understand the phenotype. Nowadays, technologies such as drones, robots, cameras and laser scanners can measure far greater numbers of plants instantly.

Plant phenotypes vary from region to region, in large part because plants are good at adapting to environmental variables, such as rainfall and soil composition. However, this variation can also be attributed, in part, to inconsistent protocols, technologies or algorithms used by researchers, said Yufeng Ge, an associate professor in the University of Nebraska–Lincoln’s Department of Biological Systems Engineering. Plant phenotyping efforts, although rapidly burgeoning, are still localized and isolated. This creates a series of problems, including difficulty in comparing and interpreting results, underused research data and unknowingly duplicated activities, Ge said.

With the help of a new $3 million grant from the U.S. Department of Agriculture’s National Institute of Food and Agriculture, Ge is leading a team of researchers from three universities who are working to change that.

The grant will bring together researchers from Nebraska, Texas A&M University and Mississippi State University to continue to expand phenotyping research already in progress; to expand the use of drone-based and other high-tech phenotyping methods; to create nationwide standards for collecting, cataloguing and analyzing phenotyping data; to teach the next generation of plant scientists how to organize, understand and effectively use the massive amount of information that high-tech phenotyping practices produce; and to make connections between a plant’s physical and genetic properties.

Read the full story from University of Nebraska-Lincoln here.

ex arrow-right check news twitter facebook Papers