Posted on

University of Nebraska-Lincoln researchers have reported the first experimental evidence of epigenetics in the single-celled organisms known as archaea.

University of Nebraska-Lincoln researchers have found revolutionary evidence that an evolutionary phenomenon at work in complex organisms is at play in their single-celled, extreme-loving counterparts, too.

Species most often evolve through DNA mutations inherited by successive generations. A few decades ago, researchers began discovering that multicellular species can also evolve through epigenetics: traits originating from the inheritance of cellular proteins that control access to an organism’s DNA, rather than genetic changes.

Because those proteins can respond to shifts in an organism’s environment, epigenetics resides on the ever-thin line between nature and nurture. Evidence for it had emerged only in eukaryotes, the multicellular domain of life that comprises animals, plants and several other kingdoms.

But a series of experiments from Nebraska’s Sophie Payne, Paul Blum and colleagues has shown that epigenetics can pass along extreme acid resistance in a species of archaea: microscopic, single-celled organisms that share features with both eukaryotes and bacteria.

The team reported its findings in the journal Proceedings of the National Academy of Sciences. Payne and Blum authored the study with Samuel McCarthy, doctoral student in biological sciences; doctoral alumnus Tyler Johnson; and alumna Erica North.

The researchers received support from the National Science Foundation.

ex arrow-right check news twitter facebook