Posted on

Researchers at Nemours and the University of Delaware have developed a blood test predictive of spastic cerebral palsy (CP).

When University of Delaware molecular biologist Adam Marsh was studying the DNA of worms living in Antarctica’s frigid seas to understand how the organisms managed to survive—and thrive—in the extremely harsh polar environment, he never imagined his work might one day have a human connection.

But it turns out that the genome of these Antarctic worms is very similar to ours in terms of the number and types of genes present. And the pioneering technique Marsh developed to analyze their genetic activity is proving valuable for human health care research.

Marsh and a business partner established a biotechnology company to make that technique available for such study. Specifically, Marsh’s method uses next-generation genetic sequencing data to measure how cells control the way genes are turned on or off, a process known as DNA methylation.

Now, a Delaware team has released a study in the peer-reviewed journal BMC Bioinformatics showing that DNA methylation patterns in circulating blood cells can be used to help identify spastic cerebral palsy (CP) patients.

Ud News Story Cp

Source: University of Delaware

The interdisciplinary work is a collaborative effort between researchers at UD, Marsh’s company Genome Profiling LLC (GenPro for short), and Nemours/Alfred I. duPont Hospital for Children.

Co-authors on the study include Marsh; Robert Akins, the project principal investigator, who directs the Center for Pediatric Clinical Research and Development at Nemours/Alfred I. duPont Hospital for Children and is an affiliated professor at UD; Erin Crowgey, the paper’s lead author and associate director of Bioinformatics at Nemours; Karyn Robinson, Akins’ laboratory manager, and Stephanie Yeager, project research coordinator, from Nemours Biomedical Research.

“I’ve been impressed by Delaware’s ecosystem,” Marsh said. “It wasn’t just us at GenPro with an idea, we had help from UD, agencies and other companies. From small things like people who were willing to give us feedback about our idea, to state funding through Delaware Bioscience Center for Advanced Technology grants to do the genetic sequencing.”

Dr. Adam Marsh

Marsh credits his unique background in computational biology, marine science and academia with helping him to approach problems in human health in a non-traditional way.

In Antarctica, Marsh was trying to understand how environmental forces epigenetically altered DNA methylation patterns in invertebrate worms. Specifically, he was studying how stress from low temperatures and low food availability stimulated chemical changes at the cellular level to help cells survive, and how those changes were passed along to future generations.

At the time, available techniques to do this work were expensive and focused on human model systems, so Marsh developed his own method and platform to measure DNA methylation patterns using NGS data. Once the platform was working, Marsh realized it could be applied to any organism, including the human genome.

“Genomes are genomes, but I needed more funding support to push the tool further,” Marsh said.

A Delaware team has shown that DNA methylation patterns in circulating blood cells can be used to help identify spastic cerebral palsy (CP) patients. Pictured left to right: Adam Marsh from UD/GenPro and Karyn Robinson, Erin Crowgey, Dr. M. Wade Shrader, Stephanie Yeager, and Robert Akins, from Nemours.
A Delaware team has shown that DNA methylation patterns in circulating blood cells can be used to help identify spastic cerebral palsy (CP) patients. Pictured left to right: Adam Marsh from UD/GenPro and Karyn Robinson, Erin Crowgey, Dr. M. Wade Shrader, Stephanie Yeager, and Robert Akins, from Nemours.

David Weir, then director of UD’s Office of Economic Innovation and Partnerships (OEIP), helped Marsh protect his idea and introduced him to Jeb Connor, whose expertise lies at the nexus of software and life sciences. Early on, Connor peppered Marsh with questions about the technology before arranging meetings for Marsh to speak with others about the project. Fast forward 100 or so presentations and the pair knew they were on to something worthwhile.

Marsh and Connor co-founded the biotech startup company GenPro in 2011 and commercialized in 2014. Today, GenPro has a core team of five professionals and the GenPro software platform provides a fast, cost-effective and more accurate way to measure DNA methylation patterns over traditional techniques.

ex arrow-right check news twitter facebook